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• Diabetic Cardiomyopathy is defined as the presence of 
abnormal heart function and structure that can occur 
independent of risk factors such as coronary artery 
disease and hypertension. 

• Heart failure is prevalent in diabetics, ranging from 
    19-26%. (Ryden L et al, Eur Heart J 2000;21:1967-1978)

• The prevalence of diabetic cardiomyopathy is increasing 
in parallel with the increase in diabetes mellitus incidence. 

• Diabetic cardiomyopathy is initially characterized by 
myocardial fibrosis, dysfunctional remodeling, and 
associated diastolic dysfunction, later by systolic 
dysfunction, and eventually by clinical heart failure. 

Diabetic Cardiomyopathy



Pathological Mechanisms Involved in the 
Development of Diabetic Cardiomyopathy
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• The heart becomes more reliant on fatty acid 
oxidation as a source of energy in diabetes and 
obesity, with a decrease in myocardial glucose 
uptake and oxidation.

• A marked cardiac insulin resistance can occur in 
diabetes and obesity.

• This switch in cardiac energy metabolism can 
decrease cardiac efficiency and contribute to the 
onset and severity of diabetic cardiomyopathies.

Cardiac Metabolic Changes That 
Occur In Diabetes and Obesity
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Mori J et al: Circ Heart Fail 2014;7:327-39

Cardiac Insulin Resistance Occurs in Diabetes 
and is Associated with Diastolic Dysfunction
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Herrero P et al: JACC 2006;47:598–604
 

Myocardial Fatty Acid Oxidation in Non-Diabetic 
(ND) and Diabetes Mellitus (DM) patients



The Contribution of Fatty Acid Oxidation to Cardiac 
ATP Production Increases in Obese Mice 

Zhang L, Ussher JR, Oka T, Cadete VJ, Wagg C, Lopaschuk GD.
Cardiovasc Res. 2011;89(1):148-56



Relationship between myocardial fatty acid 
uptake and cardiac efficiency in obese humans

Peterson L R et al. Circulation 
2004;109:2191-2196



Implications of Increased Cardiac Fatty Acid 
Use in Diabetes and Obesity

• An excessive reliance on fatty acid oxidation 
as a source of energy decreases cardiac 
efficiency (cardiac work/O2 consumed)

• Fatty acid intermediates accumulate in the 
heart (lipotoxicity)

• Increased oxidative stress
• Increased mitophagy
• Increases apoptosis
• Increased fibrosis
• Increased inflammation



What Causes the Increase in Cardiac Fatty 
Acid Oxidation and Decrease in Glucose 

Oxidation in Diabetes and Obesity?

• Increased circulating fatty acids

• Cardiac insulin resistance
• Alterations in transcriptional control of fatty acid 

and glucose oxidative enzymes (E2F1a, PGC-
1α/PPARα, ERRα, and HIF-1α)

• Acute changes in the allosteric control of fatty acid 
oxidation 

• Post-translational modification of fatty acid 
oxidative enzymes, particularly via acetylation and 
deacetylation pathways
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Ketones as a Source of Energy for the Heart

• Ketone bodies are a potential source of energy 
for the heart

• It has been proposed that ketones are a “super 
fuel” or a “thrifty” fuel” that may increase 
cardiac efficiency and benefit the failing heart

• It has also been suggested that ketone 
oxidation is increased in the failing heart

• However, it is not known to what extent ketone 
oxidation contributes to cardiac energy 
production in diabetes or obesity.



Cardiac Ketone Oxidation Decreases 
in db/db Mice 
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Cardiac Energy Production is Decreased 
in db/db Mice
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Karwi Q et al, Cardiovasc Res, cvab120, https://doi.org/10.1093/cvr/cvab120

Cardiac Energy Metabolic Changes in 
Diabetic Cardiomyopathy 

https://doi.org/10.1093/cvr/cvab120
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Cardiac Aldose Reductase Increases in Diabetes
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Inhibition of Aldose Reductase Decreases Fatty 
Acid Oxidation and Fibrosis in Diabetic 

Cardiomyopathy



SGLT 2 Inhibition and Heart Failure 
in the Diabetic

• A number of large outcomes trials have shown 
that SGLT2 inhibitors can decrease heart failure 
severity in diabetics at risk for cardiovascular 
disease

• The actual mechanism by which they do this is 
not clear

• It has been proposed that some of the benefit of 
SGLT2 inhibitors is related to an improvement in 
cardiac energy metabolism (i.e. an increase in 
ketone oxidation in the heart)



Empagliflozin Increases Plasma Ketone Levels 
in db/db Mice

0.0

0.1

0.2

0.3

P
la

sm
a

 K
et

on
e 

B
od

ie
s 

(m
M

)
C57BL/6J + Vehicle
db/db + Vehicle
db/db + Empagliflozin

*

Verma S et al, JACC Basic Transl Sci. 2018;26;3(5):575-587



Empagliflozin Improves Cardiac Work in 
db/db Mice
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Ketones provide an extra source of energy for 
the heart and increase overall cardiac energy 

production in Diabetic Cardiomyopathy

*
*

Verma S et al, JACC Basic Transl Sci. 2018;26;3(5):575-587



Verma S et al, JACC Basic Transl Sci. 2018;26;3(5):575-587
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Conclusions

• Cardiac mitochondrial insulin resistance occurs in diabetic 
cardiomyopathy

• Myocardial glucose oxidation is markedly decreased in 
diabetic cardiomyopathy

• Myocardial fatty acid oxidation increases in diabetic 
cardiomyopathy

• Myocardial ketone oxidation is decreased in diabetic 
cardiomyopathy

• Stimulating glucose oxidation (by inhibiting pyruvate 
dehydrogenase kinase) can lessen the severity of heart 
failure

• Increasing ketone supply to the heart can increase cardiac 
energy cardiac production in diabetic cardiomyopathy
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