Cross-Sectional Analysis of a Large Cohort of Patients with DbCM Enrolled in a Longitudinal Study—The Baseline Results of the ARISE-HF Trial Justin A. Ezekowitz, MBBCh MSc Professor, University of Alberta

Professor, University of Alberta Director, Cardiovascular Research, UofA Co-Director, Canadian VIGOUR Centre Cardiologist, Mazankowski Alberta Heart Institute, Canada American Diabetes Association 26 June 2023

COI/RWA/RWI

Available online at thecvc.ca

I serve on the Steering Committee of ARISE-HF

ARISE-HF is a phase 3 clinical trial (NCT04083339) sponsored by Applied Therapeutics

Rationale and design of the Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure Trial (ARISE-HF) in patients with high-risk diabetic cardiomyopathy

AHJ 2023

Check for updates

What is Diabetic Cardiomyopathy?

- Diabetic Cardiomyopathy (DbCM) is a form of Stage B Heart Failure in patients with diabetes
 - Patients with DbCM have structural and/or functional cardiac abnormalities and early symptoms of disease
 - DbCM is caused by underlying metabolic changes in the cardiac tissue, leading to fibrosis of the heart
- DbCM can occur in both Type 1 and Type 2 diabetic patients despite adequate glucose control

There are no treatments approved for DbCM

Parim B, et al. Heart Failure Rev 2019:24:279-299.; Grewal AS, et al. Min Rev Med Chem 2016; 16:120-62.; Data on file. Decision Resources Group "Epidemiology of DbCM" Report. July 2020.

DbCM is a Form of Stage B Heart Failure

Stage	Description	Functional Capacity (Peak VO ₂)	
Diabetes Stage A Heart Failure	 Metabolic derangement of the myocardium due to diabetes 	~28 ml/kg/min ~25%	
Diabetic Cardiomyopathy: Stage B Heart Failure	 Cardiac structural abnormalities Early indicators of DbCM Impaired functional capacity (~75% normal) 	decrease	
Stage C Heart Failure	 Overt Heart Failure HFpEF or HFrEF Significant impact on daily activities 	>30% decrease	
Stage D Heart Failure	 Refractory Heart Failure requiring specialized interventions (e.g., Left Ventricular Assist Device) Inability to complete daily activities 	HFpEF = Heart Failure with Preserved Ejection Fraction HFrEF = Heart Failure with Reduced Ejection Fraction	

Kosmala et al. IACC V O L . 6 5 . NO . 3 . 20 1 5: Swank et al. Circ HF 2012: Wang et al. IACC : Cardiovasc Imaging 2018: From et al. IACC 2010

How is Diabetic Cardiomyopathy Diagnosed?

DbCM is diagnosed via echocardiogram abnormalities and cardiac biomarkers in the absence of other causes of heart failure:

Echocardiographic abnormalities common in DbCM patients:

- Left Ventricular Hypertrophy (LVH)
- Impaired Global Longitudinal Strain (GLS)
- ☑ Elevation of NT-ProBNP
- Elevation of high sensitivity troponin biomarker
- **Exclude:**
 - Coronary Artery Disease
 - Valvular disease

- Left Atrial Enlargement (LAE)
- Diastolic Dysfunction (abnormal E/e')

- Congenital Heart Failure
- Uncontrolled Hypertension

Early Indicators of Diabetic Cardiomyopathy

- The most common early indicator of DbCM reported by patients is that "physical activities feel harder to do"
- This occurs because cardiac functional capacity has significantly decreased, due to fibrosis of the cardiac tissue
- Patients with DbCM gradually reset their lifestyle to include fewer physical activities because of decreased cardiac functional capacity

Cardiac functional capacity can be measured by CPET, or cardio-pulmonary exercise testing

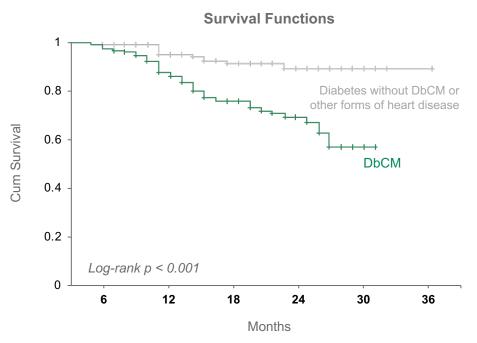
Lam CS. Diabetic cardiomyopathy: an expression of stage B heart failure with preserved ejection fraction. Diab Vasc Dis Res 2015;12:234-8

DbCM Impacts Cardiac Functional Capacity & QoL

- Decreased functional capacity impacts patients' ability to perform physical activities spanning from light exercise to activities of daily living, and quality of life
- Patients with DbCM are at high risk of progression from "physical activities feel harder to do" to "inability to perform daily tasks"

	Peak VO2	Example Activity / Bruce Protocol Stage	
	3.5	Rest	
Light to Moderate Intensity	7.0-10.5	Walking 2mph, eating, dressing	
Light to Moderate Intensity	14.0-17.5	Walking 4mph, household tasks	DbCM
2 -	21.0-24.5 Walking up stairs, Stage 2 Bruce: 2.5mph, 12%		Functional Capacity <21ml/kg/min
	28.0-31.5	Swimming, tennis	<u>_</u>
Vigorous Intensity	35.0-38.5	Jogging 10 min/miles, Stage 3 Bruce: 3.4mph, 14%	
Vigo Inte	42.0-49.0 Intense aerobic sports, squash Stage 4 Bruce: 4.2mph, 16%		
	>70.0	Professional athletes/Olympians	

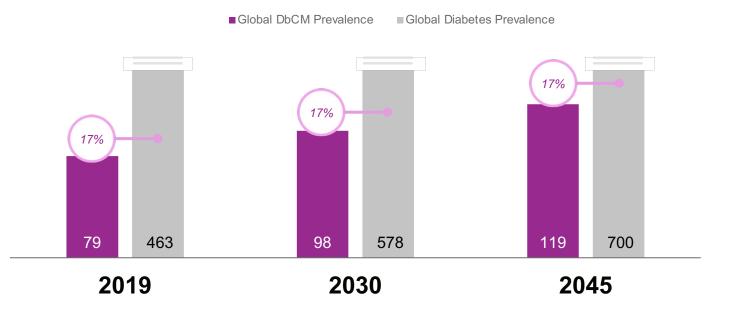
QoL, Quality of Life


AMA Guides to the Evaluation of Permanent Impairment, Sixth Edition. Author: Robert D. Rondinelli, MD, PhD

Diabetic Cardiomyopathy Can Rapidly Progress to Overt Heart Failure and Death

Progression to overt heart failure and death was ~1.5 fold higher in patients with DbCM compared to diabetic patients without DbCM

290 Patients with type 2 diabetes ≥65 years of age with preserved ejection fraction and no ischemic heart disease



Wang Y, Marwick TH. Diagnosis of Nonischemic Stage B Heart Failure in Type 2 Diabetes Mellitus Optimal Parameters for Prediction of Heart Failure JACC: CV Imaging 2018 VOL. 11, NO. 10, 2018

DbCM is a Major Health Issue, Which Will Expand with the Increasing Prevalence of Diabetes

Global Diabetes and DbCM Prevalence (People, Millions)

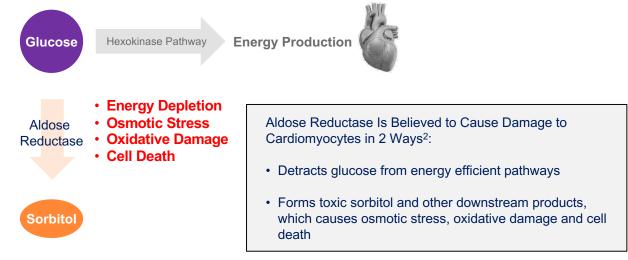
DbCM projected as 17% of diabetes population based on Dandamudi et al; Saedi et al Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition 2019, https://doi.org/10.1016/j.diabres.2019.107843

Aldose Reductase Inhibition for Stabilization of Exercise capacity in Heart Failure (ARISE-HF Trial)

Primary Objective:

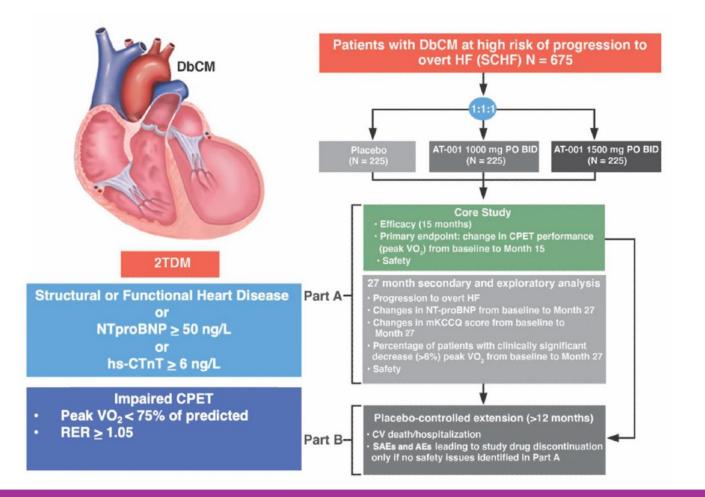
Demonstrate the efficacy of AT-001 compared to placebo, to decrease the worsening of performance on a cardio-pulmonary exercise test (CPET) in patients with DbCM.

Key Secondary Objective:


Evaluate efficacy and safety of AT-001 compared to placebo, in preventing progression to overt heart failure.

Source: NCT04083339

ARISE-HF Is An Efficacy Study to Evaluate the Ability of a Novel and Highly Selective Aldose Reductase Inhibitor (AT-001) to Prevent the Worsening of Diabetic Cardiomyopathy


Aldose Reductase Converts Glucose to Sorbitol and Causes Damage to Cardiomyocytes in Patients with Diabetes

Changjin Zhu, Diabetes Mellitus – Insights and Perspectives, Chapter 2 Aldose Reductase Inhibitors as Potential Therapeutic Drugs of Diabetic Complications, 2013. http://dx.doi.org/10.5772/54642

Januzzi, AHJ 2023

ARISE-HF: Key Inclusion/Exclusion Criteria

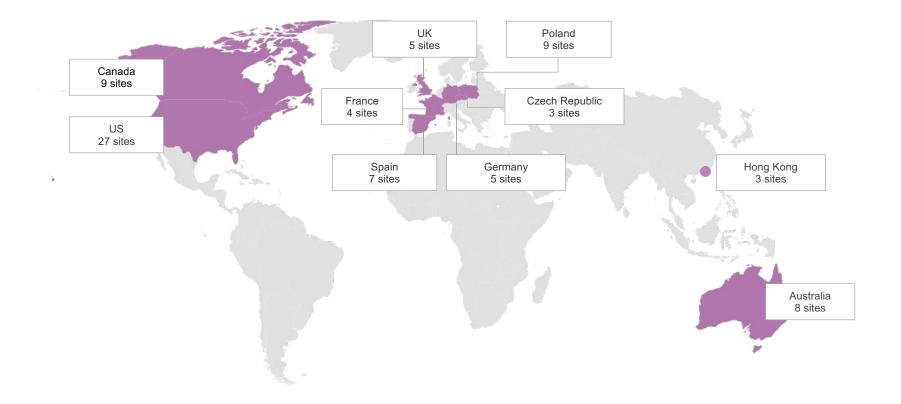
INCLUSION CRITERIA

- 1. Diagnosis of Type 2 DM
- 2. Age:
 - ≥60 years, or
 - ≥40 years, with duration of diabetes >10 years or renal impairment (eGFR <60 mL/min/1.73 m²)
- 3 . Demonstration of DbCM/ Stage B Heart Failure

LVEF≥ 45% and at least one of the following

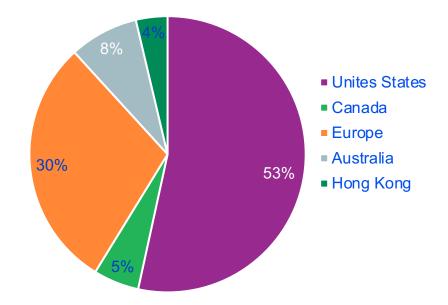
- Echocardiographic abnormalities
- NTProBNP > 50 pg/ml
- HsTNT <u>></u> 6 ng/L
- 4. Impaired functional capacity on max CPET
 - RER > 1.05
 - Peak VO2 <75% of age/gender predicted

KEY EXCLUSION CRITERIA

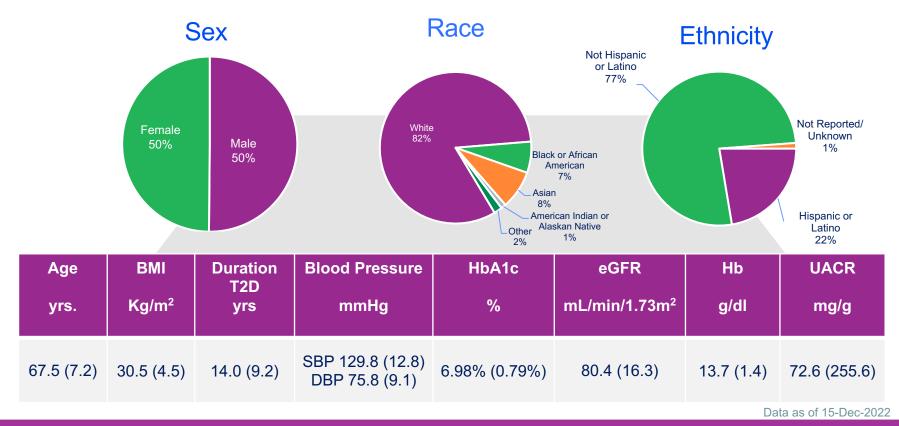

- · Diagnosis or signs of overt/symptomatic heart failure
- Use of a loop diuretic
- History of CAD, MI, ACS, CABG, PCI, stroke
- History of severe valve disease, clinically significant arrhythmia, or other cause of cardiomyopathy
- Severe disease impacting implementation of the protocol or performance of a CPET
- SBP >140 mmHg or DBP >90 mmHg
- BMI <u>></u>45 kg/m2
- HbA1c >8.5%
- eGFR <45 mL/min/1.73 m²

CPET = Cardio-pulmonary Exercise Test SBP = Systolic Blood Pressure DBP = Diastolic Blood Pressure ACS = Acute Coronary Syndrome CABG = Coronary artery bypass graft Percutaneous Coronary Intervention CAD = Coronary Artery Disease

ARISE-HF is Being Conducted at 80 Sites Globally

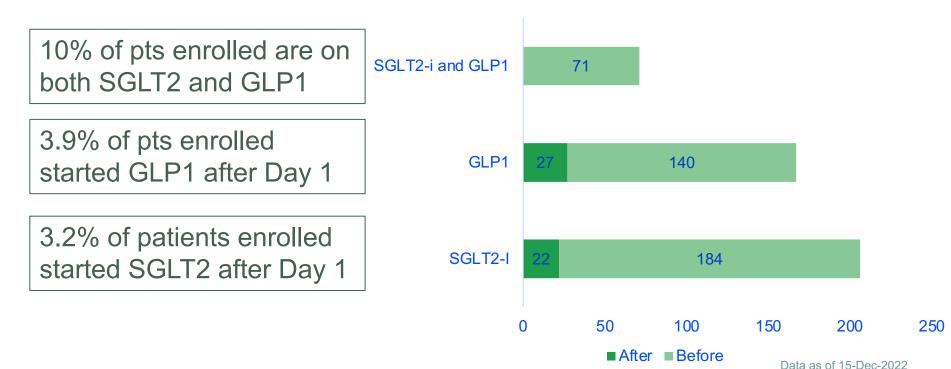


Enrollment Dashboard


	Screenned Overall	Randomized Overall
Overall	2116	691
North America	1153	390
Canada	142	39
United States	1011	351
Europe/Israel	732	215
Czech Republic	106	41
France	31	9
Germany	127	44
Poland	174	41
Spain	80	12
United Kingdom	214	68
Asia Pacific	231	86
Australia	157	59
Hong Kong	74	27

Patients enrolled

ARISE-HF: Baseline Characteristics Overview (n= 684)



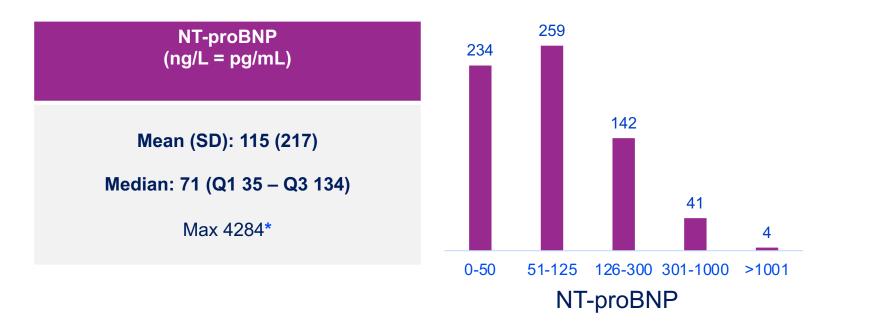
Baseline concomitant medications (n= 684)

Medications	N (%)
Statins	490 (72%)
ACE-I or ARBs	458 (67%)
B-blockers	139 (20%)
MRAs	12 (2%)
Diuretics (HCTZ)	119 (17%)
SGLT2 inhibitors	184 (27%)
GLP1-RA	140 (21%)
Metformin	462 (68%)
SU	133 (19%)
Insulin	163 (24%)

SGLT2-I & GLP1 Use (n=684)

ARISE-HF: Baseline Peak VO2 (n= 680)

PeakVO2
(ml/kg/min)


Mean (SD) 15.7 (3.8)

Median 15.6 (Q1 12.9 - Q3 18.6)

Peak VO2	Example Activity / Bruce Protocol Stage
3.5	Rest
7.0-10.5	Walking 2mph, eating, dressing
14.0-17.5	Walking 4mph, household tasks
21.0-24.5	Walking up stairs, Stage 2 Bruce: 2.5mph, 12%
28.0-31.5	Swimming, tennis
35.0-38.5	Jogging 10 min/miles, Stage 3 Bruce: 3.4mph, 14%
42.0-49.0	Intense aerobic sports, squash Stage 4 Bruce: 4.2mph, 16%
>70.0	Professional athletes/Olympians

NT-proBNP at Screening (n= 674)

* Patient who had a history of HFpEF/ Exclusionary Criteria

Baseline characteristics and Peak VO2

	Q1	Q2	Q3	Q4	
	N=170	N=170	N=170	N=170	Р
PeakVO ₂ , ml/min/kg	10.9 (1.5)	14.2 (0.8)	16.9 (0.9)	20.7 (1.7)	<0.001
Age, yrs	68.8 (7.4)	68.6 (6.9)	66.4 (7.1)	66.3 (6.8)	<0.001
Male, n, %	40 (24%)	67 (39%)	87 (51%)	148 (87%)	<0.001
Race, n, %					
White	143 (84%)	143 (84%)	134 (79%)	139 (82%)	0.05
Black or African American	15 (9%)	13 (8%)	13 (8%)	5 (3%)	
Others	11 (7%)	14 (8%)	23 (14%)	26 (15%)	
BMI, kg/m²	31.7 (4.3)	31.0 (4.8)	29.9 (4.6)	29.5 (4.1)	<0.001
SBP, mmHg	127.3 (12.0)	130.6 (13.3)	130.5 (13.2)	130.8 (12.5)	0.03
DBP, mmHg	75.4 (9.5)	75.8 (9.0)	76.0 (8.6)	76.2 (9.2)	0.85
Medical History					
Duration of T2DM, yrs	14.8 (9.3)	13.0 (9.8)	15.2 (9.0)	13.0 (8.4)	0.05
Hypertension, n, %	121 (71%)	121 (71%)	110 (65%)	114 (67%)	0.49
Dyslipidemia, n, %	13 (8%)	26 (15%)	36 (5%)	33 (19%)	<0.001

Baseline characteristics and Peak VO2

	Q1	Q2	Q3	Q4	
	N=170	N=170	N=170	N=170	Р
PeakVO ₂ , ml/min/kg	10.9 (1.5)	14.2 (0.8)	16.9 (0.9)	20.7 (1.7)	<0.001
Concomitant medications, n, %		:		1	
ACEI-ARBs	114 (67%)	120 (71%)	109 (64%)	115 (68%)	0.65
B-blockers	45 (27%)	40 (24%)	31 (18%)	22 (13%)	0.01
HCTZ	42 (25%)	30 (18%)	25 (15%)	22 (13%)	0.02
SGLT2 inhibitors	34 (20%)	41 (24%)	52 (31%)	56 (33%)	0.03
GLP1-RA	35 (21%)	28 (17%)	36 (21%)	41 (24%)	0.38
Laboratory test					•
NT-proBNP, ng/L	94 (48-165)	73 (40-136)	68 (32-137)	57 (21-91)	<0.001
Hs-Tnt, ng/L	8 (6-11)	9 (6-12)	8 (6-13)	9 (7-13)	0.09
HbA1c, %	7.0 (0.8)	6.9 (0.8)	7.1 (0.8)	7.0 (0.7)	0.19
Hgb, g/dl	13.0 (1.4)	13.5 (1.4)	13.8 (1.3)	14.4 (1.3)	<0.001
eGFR, ml/min/1.73m ²	78.8 (16.9)	78.8 (15.5)	81.3 (17.5)	82.7 (14.9)	0.07
UACR	16 (8-41)	14 (8-46)	14 (8-42)	16 (9-41)	0.45

Baseline characteristics and Peak VO2

	Q1	Q2	Q3	Q4	
	N=170	N=170	N=170	N=170	Р
PeakVO ₂ , ml/min/kg	10.9 (1.5)	14.2 (0.8)	16.9 (0.9)	20.7 (1.7)	<0.001
Echocardiogram		<u>.</u>			
LVEF, %	62.3 (5.7)	62.2 (6.0)	62.2 (5.3)	62.1 (5.1)	0.98
GLS, %	-17.5 (3.3)	-17.4 (3.1)	-17.5 (3.3)	-17.6 (2.7)	0.98
LAVI, ml/m ²	23.5 (6.7)	24.7 (7.3)	24.0 (7.5)	25.9 (8.4)	0.03
LVMI, g/m ²	74.9 (20.2)	79.7 (22.1)	77.9 (22.1)	78.1 (19.1)	0.22
E/e'	11.9 (6.0)	10.2 (2.9)	10.4 (5.0)	9.2 (2.7)	<0.001
RVSP, mmHg	24.9 (7.1)	23.7 (6.8)	22.9 (7.4)	21.9 (8.2)	0.03

ARISE-HF: Baseline questionnaires (n= 680)

Questionnaire	Mean (SD)
mKCCQ Overall	90.3 (14.6)
mKCCQ Physical Activity	89.1 (16.3)
PASE Score	154.3 (89.6)

- Diabetic Cardiomyopathy (DbCM) is a serious, progressive disease that can lead to increased hospitalizations, morbidity and mortality
- There are currently no treatments approved for DbCM; AT-001 is being investigated for the treatment of DbCM
- Baseline characteristics of the ARISE-HF identify a pathological phenotype often unrecognized and susceptible to progress toward overt heart failure

